
7 AD-A-11 843 NAVAL RESEARCH LAB WASHINGTON- DC
FI 9/2

FORMAL FOUNDATION FOR THE TRACE METHOD OF SOFTWARE SPECIFICAT--ETC(U)

UNCLASSIFIED NRL-mR 4874 NL

ENEEMONEE I

SECURITY CLASSIFtCATION OF T.IS PAGE eWhn Date En#.t.d)

REPORT DOCUMENTATION PAGE BEFORE CMLTING FORM

I RelayI NUMBIERI 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMIiER

NRL Memorandum Report 4874 1 -5
4. TITLE find Subtitle) S TYPE OF REPORT I PERIOD COVERED

A FORMAL FOUNDATION FOR THE TRACE Interim report on a continuing

METHOD OF SOFTWARE SPECIFICATION NRL problem.
6. PERrORMING ORG. REPORT NUNleRaf

7 AUTNOR(aj S. CONTRACT OR GRANT NUMMER(@)

J. McLean

9. PERFORMING ORGANIZATION NAME AND AODRESS 10. PROGRAM ELEMENT. PROjECT. TASKA 14EA &I WORlK UNIT NUMBElRfS

Naval Research Laboratory 61153N; RRO14-09-41;
Washington, DC 20375 75-0228-0-2

II CONTROLLING OFFICE NAME AND ADDRIESS I. REPORT DATE

September 1, 1982
13. NUMIER OF PAGES

62
14. MONITORING AGENCY NAME I AODRESS II different from Controlling Office) IS. SECURITY CLASS. (of tfhi ,eport)

UNCLASSIFIED
IS.. DECLASSIFICATION/DOWNGRAOING

SCHEDULE

IS. DISTRIBUTION STATEMENT (f1 tl Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of Ihe abstract ,ntored In Block 20. II differten Ifro Report)

1S. SUPPLEMENTARY NOTES

1S. KEY WORDS (Contirnue an re*versoe Idef noeowl, md 10@ntlfy bY block number)

Abstract specification
Computer software

20. AISTRACT (Ceflnu. an rev, ere. t1ide nece.e... aid Idenflly by block nuMl e.)

/ An overview of the trace method for the abstract specification of software is
followed by a syntax, semantics, and derivation system for the method. This foundation
supports a comparison of the trace method with the algebraic approaches to abstract
specification, while completeness and sounaness theorems suggest methods for proving
specifications consistent and sufficiently-complete. Areas for future research are
discussed..

DOI 'S 1473 EDITION OF 1N.0V1 IS OSSOLETE
S/N 0102-014- 6601

SErCURITY CLASSIFICATION OF THIS PAGE (When DAH. 801dntded)

.

A

CONTENTS

PREFACE ... iv

INTRODUCTORY OVERVIEW OF THE TRACE METHOD 1

SYNTAX FOR TRACE SPECIFICATIONS 5

SEMANTICS FOR TRACE SPECIFICATIONS 12

TRACE DEDUCTIVE SYSTEM 18 ,1

SOUNDNESS THEOREM 25 K

COMPLETENESS THEOREM 30

APPLICATIONS ... 40

COMPARISON WITH THE ALGEBRAIC APPROACH 50

FUTURE RESEARCH ... 53

ACKNOWLEDGMENTS ... 55

FOOTNOTES ... 56

BIBLIOGRAPHY ... 58

Accession For

NTIS-- GRA&I

DTIC TAB 5D T C Unam-tounc ed

D T IC Justification

ELECTE
SEP 29 I __Distribution/

Availability Codes
IC, Avail and/or

Dist Special

di

PREFACE

W. Bartussek and D. L. Parnas introduced the "trace method" for abstract

software specification in [l], at least partly, in response to Parnas' earlier

observation that there is no "precisely defined notation for writing abstract

specifications... .that I feel to be useful" (13, p8631. The method is useful,

but since it has received no formal foundation, it falls short of Parnas' goal

of being "precisely defined". A formal foundation for the trace method is

necessary for (1) any rigorous description of the method, (2) the design of

software support for the specification user, (3) the proof of assertions about

trace specifications and their implementations, and (4) the rigorous

comparison of the trace method with other formal methods of abstract

specification.

This report contains an informal overview of the trace method and abstract

specification techniques in general, followed by a formal foundation for the

method: a syntax, a semantics, and a set of inference rules for trace

specifications. Also included is a proof of a soundness theorem and of a

completeness theorem for the rules of inference vis-a-vis the semantics, and

sample applications of these theorems to assertions about the consistency

and sufficient-completeness of trace specifications. Finally, the method is

compared vith the algebraic approaches to abstract specification, and areas

for future research are discussed.

Strictly speaking, the report is self-contained with respect to both

formal logic and the trace method. Nevertheless, some background in logic,

as, e. g., can be obtained from (10), would be useful, as would an informal

understanding of the trace method, as presented in [l). An elementary

knowledge of set theory, as, e. g., given in f1l1, is assumed.

i -I~~. - -. ~-- - iv- .4. -

A FORMAL FOUNDATION FOR THE TRACE METHOD OF
SOFTWARE SPECIFICATION

INTRODUCTORY OVERVIEW OF THE TRACE METHOD

The trace method is a formal method for the abstract specification of

software, where "software" is liberally construed to cover any program

(procedure) or set of programs. As such, in so far as the terms "abstract

data type" and "module" are used to refer to sets of related programs, it is a

method for their specification as well. Hence, I will freely interchange

these terms.

Being formal does not distinguish the trace method from a large number of

other methods for specifying software. However, being abstract does. By

"labstract" I mean that a trace specification describes only those features of

a program that are essential. In particular it is a totally behavioristic

specification: it specifies what the program does without describing a method

for doing it. If the use of a particular algorithm is required, then this is

included as a constraint to, not as a part of, the specification (see [61 for

a discussion of the problem of presenting algorithmic constraints in a

requirements document). In this respect, it differs from procedure

specification methods that are based on "operational definitions" and abstract

data type specification methods that are based on "abstract models" (9]. For

ou r purposes, the most important feature of these latter classes of methods is

that they specify software by giving a paradigm implementation.

Manusaript submitted Iday 26, 1982.

The advantages of abstract specification are thoroughly discussed in [131,

but it is worthwhile reviewing them here. First, abstract specifications do

not contain clutter. This property makes specifications more perspicuous and

easier to handle in proofs about implementations. Most importantly their

freedom from clutter eliminates a whole class of potential misunderstandings:

those that result from the attempted gleaning of the essential features of a

specification from a mass of extraneous details. Second, abstract

specifications are conducive to good programming practice. By requiring

program output to be specified solely in terms of input, the trace method not

only forces designers to make any information shared by two or more modules V
1

part of an explicit interface, it also discourages unnecessary modular

coupling by focusing the designer's attention on such shared information.

This makes independent implementation of modules possible and leads to

understandable software that is easier to maintain [121.

With respect to the trace method in particular, programs are specified by

describing three properties they possess:

(1) What do the access proced,--s of the programs look like, i. e., what

are their names, their parameter types, and their return values types

if any? These properties are indicated by sentences of the form

proc: (parmltype) x...x (par type) --+ (return value type).

(2) Which series of procedure calls are legal, i. e., are not regarded as

being in error? These are indicated by assertions of the form

L(series).

(3) What is the output of legal series of procedure calls that end in a

function call? This value is denoted by V(series).

2

In order to make specifications more readable, the following

abbreviational device is used. If two series of procedure calls agree on

legality and return value with respect to future program behavior, then we

say they are equivalent and write string,-strin 2.

As an example, consider the following specification of a stack module that

contains three procedures: PUSH takes an integer as a parameter but returns

no value; POP neither takes a parameter nor returns a value; and TOP takes no

parameters but returns an integer. The syntax of the module is specified thus.

PUSH: (int)

POP:

TOP: -- p (int)

The semantics of the module consists of five assertions describing the

module's behavior: (1) if a series of preceding procedure calls has not

resulted in an error, then PUSH can be legally called with any integer

parameter; (2) calling TOP will not result in an error if and only if calling

POP does not; (3) calling PUSH followed by POP will not affect the future

behavior of the module; (4) if TOP can be legally called, then calling it will

not affect the future behavior of the module; and (5) the value of any legal

series of procedure calls ending in PUSH followed by TOP is the parameter of

that PUSH. These assertions are symbolized thus.

3

(1) L(T) ->LCT.PUSH(i))

(2) L(T.TOP) k--> L(T.POP)

(3) T-.T.PUSH~i).POP

(4) L(T.TOP) --7- T:T.TOP

(5) L(T) -~V(T.PUSH~i)-.TOP)-i

A formal explanation of exactly how assertions (3), (4), and (5) combine

to force stack-like behavior necessitates a formal presentati.on of the methiodi.

SYNTAX FOR TRACE S'iECIFICATIONS

The first step in formalizing the notion of a trace specification is to

precisely define the term "trace specification". Such a definition consists

of giving a specification language L and stating how the well-formed

expressions of L can be combined so as to yield a specification.

1. Language for Specifications

L is defined by giving its vocabulary and the formation rules used to

combine vocabulary elements into well-formed expressions. It is the smallest

set that both contains its vocabulary and is closed under its formation

rules. We assume that certain well-specified, countable, nonempty domains are

given.

A. Vocabulary

The vocabulary of L consists of parentheses ();the logical

connectives -&,v, -0-, 44 (read not, and, or, if then, and if and only

I' if, respectively)- the existential quantifier E; the equality symbol

and the following additional elements.

1. Trace Expression Variables:

A, B, C, .. are each a trace expression variable. They can be

5

superscripted.

2. Trace Expression Constants:

e is the only trace expression constant. (It denotes the empty

trace.)

3. Trace Predicates:

The unary predicate L and the binary predicates F and ; are each

a trace predicate. 1 (F is true of a (D,T) if and only if T

returns a value of type D.)

4. Trace Functions:

The dot (.) and V are each a trace function.

5. Procedure Names:

Any finite character string is a procedure name.

6. Domain Names:

The name of any given domain is a domain name. Such domains are

said to be named.

7. Domain Constants:

cd, where c denotes any member of a named domain d, is a

domain constant.

8. Domain Functions:

fd, where f denotes any well-specified function on the members

of a named domain d, is a domain function. If f denotes an

n-placed function, then f is n-ary. If f denotes a function

from d to some domain d', then f is said to be d'-valued.

9. Domain Relations:

Rd, where R denotes any well-specified relation on the members

of a named domain d, is a domain relation of type. If R

6

denotes a relation on n elements, it is n-ary.

10. Domain Variables:

ad, bd, Cd, ... , where d is a domain name, are each a

domain variable. They can be superscripted.

B. Formation Rules2

1. n Place Argument List:

0 place argument list -- >

1 place argument list -- domain element

m place argument list --)

m-i place argument list, domain element

for m>l

If each element of an argument list is of the formed, the argument

list is said to be of type d.

2. n Place Domain List:

0 place domain list -- >

1 place domain list -(Cdomain name)

m place domain list ->

m-I place domain list x (domain name)

for m)l

3. Syntax Sentences:

syntax sentence -- >

procedure name: n place domain list

procedure name: n place domain list -- > (domain name)

7

k ' , t~ i i . ,. _ -t . . _ _ _ , , i

When the syntax sentence is of the latter form, then the procedure

name is said to be a function name of type d where d is the rightmost

domain name in the sentence. If the procedure name is followed by an

n place domain list, it is said to take n parameters. Any domain

name that occurs in a syntax sentence is a parameter domain. Any

parameter domain that occurs to the right of an arrow is a return

value domain.

4. Procedure Calls:

procedure call -- >

procedure name

procedure name(n place argument list)

where n>O

5. Variables:

variable -- >

domain variable

trace expression variable

6. Trace Expressions:

trace expression -- >

trace expression constant I

trace expression variable

procedure call I

trace expression.trace expression

7. Domain Elements:

domain element -- >

domain constant

8[

domai variable

8. Terms:

term --

domain element

trace expression

V(trace expression)

n-ary domain function(n place argument list)

where the function and argument list are of the

same type and n,0

Terms have the following types. Domain elements of the formocd

are of type d. Trace expressions are of type "trace expression".

Terms of the form f(argument list) where f is a d-valued domain

function are of type d. Terms of the form V(trace expression) are

untyped. Two terms are of compatable type if both are of type OC,

both are untyped, or one is of type d where d is a domain name and

the other is untyped.

9. Assertions:

assertion -- >

L(trace expression)

F(domain name,trace expression) I

trace expression-trace expression

n-ary domain relation(n place argument list) I
where the relation name and argument list are of

the same type and n>O

9

term-term[

where the terms are of compatable type

-assertion

(assertion & assertion)!

(assertion v assertion) I

(assertion assertion)

(assertion (-- assertion)

(Evariable)assertion

(variable)assertion

Parentheses will be dropped from the outside of Boolean

expressions for the sake of readability when no ambiguity

results. Each occurrence of a variable v in an assertion (v)A

or (EvYA is said to be bound. Occurrences that are not bound

are free. An assertion is closed if it contains no free

occurrences of any variable.

II. Specification

A trace specification is an ordered pair (syntax specification, semantic

specification). A syntax specification is a finite set of syntax sentences.

A semantic specification is a recursive set of assertions that contain a

procedure call of the form proc (or proc(p 1,...,pn)) only if the syntax

specification contains a sentence of the form proc: (-> (d)] (or

proc: (dl) x...x (dn) 1--> (d)] where for each i, Pi is a domain

element of type di).

10

,I . A L . A k . . .~

A trace specification is proper if every assertion in its semantic

specification is closed. Since all assertions in a proper trace specification

are closed, we can abbreviate assertions of the form (v)A by A. For the rest

of this paper, we will mean by "trace specification" proper trace

specification, unless explicitly stated otherwise.

SEMANTICS FOR TRACE SPECIFICATIONS

We have yet to assign meanings to the symbols introduced in our trace

specification language. This is necessary for the unambiguous interpretation

of a trace specification. It is accomplished by stating under what conditions

assertions in the language are true. As such, we must define a model and

define what it means for an assertion to be true in a model. This will also

support rigorous definitions of at least one sense of the concept of

consistency for a trace specification, i. e., having a model, and at least one

sense of the concept of sufficient-completeness for a trace specification, i.

e., not having models that differ with respect to the values they yield for a

legal, variable-free trace expression ending in a function call. Although I

will further discuss these semantic conceptions of consistency and

sufficient-completeness and the relation between models and implementations

later, it should be clear that there is a model that makes V(T)-a true if

there is an implementation that returns a when accessed by the series of

procedure calls T. Hence, semantically inconsistent specifications have no

implementation, and specifications that are sufficiently-complete in this

semantic sense do not have implementations that differ with respect to

observable behavior.

12

*1'

Definition of Trace Model

A trace sequence is an ordered pair (D,I) where D is a disjoint tuple of

domains and I is a function from syntactic constructs in L to their

denotations in D. D = (DT, DI,...,Dn,Dn+I,...,Dm) where DT can

intuitively be regarded as consisting of (series of) procedure calls

("traces"), D 1-Dn can intuitively be regarded as return value domains,

and Dn+I-Dm can intuitively be regarded as parameter domains that are

not return value domains. DT contains the subsets DL, intuitively

contisting of the legal traces, and DV, intuititively contisting of those

traces that end in a function call. DV is partitioned into subsets DVi

where DVi can intuitively be regarded as consisting of those traces that

return values of type d where l[d]=Di. OL contains the subset ne,

intuitively contisting of the null trace, such that De0 DV =J. DT

contains only the null trace and traces that are formed from elements of

DT by composing them with a procedure call.3 More formally, x E D

T

implies that xE De U ly: y - I[.](u,w) -for some u E DT and w

Rng(Rng(I/ v: v is a procedure namej)), where I meets the following

conditions:

(1) 1[-] - (x,x):- x C UD1 .

(2) I[L] - DL.

(3) I[(F -)DiJ X Dvi: lHi~n.

(4) I[V] - f: DviIJ DL -) Di, lin.

(5)I[.] - f: DT x DT --> DT such that for all x, y, z in D

(a) f(f(x,y),z) - f(x,f(y,z)),

13

(b) f(x,y) - x if y CE Del

Cc) f~x,y) - y if x E Del

(d) f~x,y)EF DT - DV if y DV U Del

Ce) f(x,y) C- Dvi if y e DVi,

(f) f(x,y) C6 DT -DL if x DL.

(6) 1[--] - iCx,y).: x and y meet conditions Ca) (c) below]

(a) (x,y) (DT xDT

(b),for all z Cr DT, Ii.1(x,z) 4 DL, iff 1i.1(y,z) E L

Cc)for all z C6 DT - Del I[.]Cx,z) E DVfI DL~ iff Ii.](y,z)C-

DvtA DL and I(.]Cx,z) 6 DVf A L m>I[V]I(.](x,z))

(7) Idomain name]IE D -DT.

C8) 1[1 Kdl~ id] where Ad is a domain element.

(9 Iif~~ is a function from Iidjn to id'] where f is a n-ary, d'

valued domain function.

(10) I[RdI C Idin where R is a n-ary domain relation.

(11) itrace expression] is defined as follows:

Ca) Ie] f D e.

Cb) i[T] C D T for any trace variable T.

Cc) I[procedure call with n parameters] - I(proc]ClI~a11 ... 11n)

where proc is the procedure name of the call, ji is the ith

parameter of the call, and Iprocedure that takes n parameters]

- f: (Dl..~n --'§ D* such that Dpi is that element

of D associated with the procedure's ith parameter and D*p

Dvi if the procedure is a functional procedure of type d and

t(dl.Di, else D* DTd% DV.

14

(d) I[T.R] I(.j(I[T,I[R]) where T and R are any trace expressions.

For fixed D, a trace model is the set of all sequences S = (D,I) that are

identical except, perhaps, for what I assigns to domain variables, trace

variables, and trace expressions containing variables.

Definition of truth in a model

Given our definition of trace model, we must now define what it is for

such a model to be a model of a particular trace specification. We do this by

defining what it is for an assertion to be true in a model.

Consider any trace model M composed of sequences Si - (D,Ii). Let T

and T' be any trace expressions, R any relation name, d any domain name, and t

and t' be any terms. Following Tarski [14], we will define truth in terms of

satisfaction.

(1) Si satisfies L(T) iff Ii[T] CI i[L].

(2) Si satisfies F(d,T) iff (Ii[d],1i[T]) E Ii(F].

(3) Si satisfies R(nl,...,nm) iff (I[nl],...,I[nm]) E I[R].

(4) Si satisfies t-t' iff I*i[t] and I*i[t'] are both defined and

I*i[t]lI*i[t'l where I*i[x] - Ii[x] if x is a domain element

or trace expression, I*i[xl - Ii[V](I[T]) if x is of the form

V(T), and I*i[x] - Ii(fj(I[nl],...,I[nm]) if x is of the form

f(nl ,...,nm).

(5) Si satisfies TS iff (Ii(T],Ii[S])E i[].

15

For any assertions A and B and any variable v, we employ the standard

definition of satisfaction.

(1) Si satisfies -A iff Si fails to satisfy A.

(2) Si satisfies A & B iff Si satisfies A and Si satisfies B.

(3) Si satisfies A v B iff Si satisfies A or Si satisfies B.

(4) Si satisfies A --) B iff Si satisfies B or Si fails to satisfy

A.

(5) Si satisfies A (--) B iff Si satisfies both A and B or Si

satisfies neither A nor B.

(6) Si satisfies (Ev)A iff there is a S in M such that Sj

satisfies A and Ij is like Ii except perhaps in what it assigns

to v and to trace expressions containing v.

(7) Si satisfies (v)A iff A is satisfied by every S. in M such that V

Ij is like Ii except perhaps in what it assigns to v and to trace

expressions containing v.

An assertion is true in M if and only if it is satisfied by every Si in

M.

A specification S is satisfiable if there is a sequence that satisfies

every assertion in the semantic specification of S.

M is a model for a trace specification if and only if every assertion in

the specification is true in M.

An assertion A is a semantic consequence of a specification S, written

16

S*A, if and only if A is true in every model of S.

Although no reference to programs is made in the definition of "model", it

should be noted there is a natural correspondence between models and modules.

Given any implementation M, we say that M suggests a model M' with the

following domains: DT consists of all possible compositions of procedure

calls of M; DL consists of those elements of DT that do not result in

error; Dv consists of those elements of DT that end in a function call;

and De is the null prodecure call. D is DT,Dl,...,D n where Di

V
1

Is the ith parameter domain of the module under an appropriate ordering. If

M' models a specification S when I is a function Lhat takes a string in S to

its namesake in M', then wp say S specifies M.

It should be clear that every implementable specification has a model that

can be constructed in this fashion. The converse is false unless the

specification has a model that contains only computable functions.4 I

will say more on this later, but it should be noted that the language can be

restricted so as to eliminate such functions. I have chosen not to do so here

for the sake of a more elegant theory and to emphasize the distinction, often

blurred in the literature, between a model and an implementation. All

specifications contained in this paper are implementable.

17

TRACE DEDUCTIVE SYSTEM

An alternative to the semantic conception of consistency for a trace

specification discussed in the previous section is that one cannot derive

V(T)-d, VCT)-d', and -d-d' from the specification for any variable-free trace

expression T and domain constants d and d'. An alternative to the semantic

conception of sufficient-completeness for a specification is that whenever

L(T.C) is derivable from the specification for any variable-free trace

expression T and variable-free function call C, then one can derive VCT.C)-d

f or some domain constant d. In the next two sections I will examine the

relation between these syntactic conceptions of consistency and

sufficient-completeness vis-a-vis their semantic counterparts. However, we

must first formalize these concepts of consistency and

sufficient-completeness. This requires a precise definition of derivation.

The following definition of derivation is based on a trace deductive

system that has been designed to make derivations relatively easy to

construct. Systems that lend themselves more easily to computerized

verification of derivations have been constructed from this one by replacing

the tautology rule by modus ponens and supplementing the axiom set with a

complete set of axioms for sentential calculus as can be found, e. %., inV

[l01. A deduction theorem for the system is proven, and possible extensions

18

and modifications to the system are discussed at the end of this section. The

definition of derivation will refer to axioms and rules of inference as

defined below.

Let v be any variable; t any term; P any procedure call; and A, B, and C

any assertions. At/s is the result of replacing every free occurrence of t in

A by s except where such a substitution would result

in a bound occurrence for s.5

V
1

Axioms

Any well-formed instance of the following schemata is an axiom.

1. (Ev)v-t, where v and t are the same type, t not of the form V(T) for any

trace expression T nor of the form f(tl,...,tn) .

2. (v)(A -- > B) _-> (A -- > (v)B), where v is not free in A.

3. ((v)A & (Ev)v=t) -- > Av/t, where Av/t is well-formed.

4. (Ev)v-t -> t-t

5. t-t' -JO (A *-> A'), where A' is like A except for possibly having some

occurrences of t' where A has t.

6. tit' --> (Evdl)Vdlot [v... v (Evdn)vdn-tl for each parameter domain

i di such that Vdi-t is well-formed.

7. T=T.e

8. T-e.T

19

9. TIR 4--

(s)((L(T.S) <--> L(R.S)) &

(-S-e ->

(((Ed)V(T.S)-d - (Ed)V(R.S)-d) &

((Ed)V(T.S)=d -> V(T.S)=V(R.S)))))

10. L(e)

11. L(T.$)--> LMT

12. F(D,C), where D is any domain name and C is a function call of type D.

13. -F(D,C), where C is any procedure call that is not a function call of type

D.

14. (F(D,T.S) & -S=e) (--> F(D,S)

15. (F(D,T) & LT)) 6-> (Ev)V(T)-v where v is of type D

16. -T-e ->

(ES)((EalI)...(Ealn)T=S.C1 v ... v

(Eakl)...(Eakm)T=S.Ck) where Ci is a call on the ith

procedure of S with aij as the jth parameter of the call.

Rules of Inference

(T) Tautology: if A is a tautological consequence (as, e. g., determined

by a truth table) of a (possibly empty) set of earlier lines in a

derivation, then A may be entered as a line in the derivation.

(U. G.) Universal Generalization: if A appears as an earlier line in a

derivation, then one may enter (v)A as a line in the derivation.

(E. I.) Existential Interchange: if A appears as an earlier line in a

derivation and B is like A except for having one or more occurrences

20

L

of (Ev) where A has -(v)- or vice versa, then one may enter B as a

line in the derivation.

A derivation from a trace specification S is a finite sequence of lines,

each of which is either (1) an assertion contained in the semantic

specification of S, (2) an axiom, or (3) an assertion justified by a rule of

inference with the restriction that U. G. is not applied to any variable that

occurs free in the semantic specification of S. (It should be noted that the

restriction on U. G. is otiose when S is proper.).

An assertion A is derivable from S, written SI-A, if and only if there is a

derivation from S that has A as a last line.

Deduction Theorem

The following theorem will prove useful in later sections of this paper.

Theorem: If S is a (possibly nonproper) trace specification whose semantic

specification contains the assertion B, then SIA only if S'I-(B --> A) where

S' - S - IBI, i. e. S with B removed from its semantic specification.

Proof: Proof is by induction on the length of derivations. As such, we will

assume the theorem for all derivations of length less than n and show that it

must hold for all derivations of length n whose final line is, say, A. There

are four possible cases:

21

(I) If A is an axiom, then trivially S'PA, from which we can infer that

S'P(B -- A) by T.

(2) If A was inferred by T, then it is a tautological consequence of earlier

lines Ll,...,Lm . By hypothesis, S'.(B --> L)),...,S'g.CB -

from which we may infer that S'I(B --> A) by T.

(3) If A was inferred by U. G., then it is of the form (v)L where L appears as

an earlier line. By hypothesis, S'I-(B --> L). Now since we could apply

U. G. to L, it must be the case that the generalized variable does not

occur free in S. Therefore, we can apply U. G. to obtain S'?-(v)(B -->

L). Further, since B is in S, it can't be the case that v appears free in

B, so we can apply axiom (2) and T to obtain S'j.(B --> (v)L).

(4) If A was inferred by E. I. from an earlier line L, then S'J-(B --> L), and

we can apply E. I. to obtain S'P(B -> A).

Possible Extensions and Modifications

The above system is minimal in that although I think it correctly

represents the trace method as described in [11, it could be extended by the

addition of further axioms that reflect modifications to the original

description of the method. Such an extension includes stronger axioms for

trace equality and axioms that allow for a more radical form of nondeterminism

than allowed for here -- i.e., one in which the same implementation may return

different values for the same string of function calls at different times.

I chose not to make these extensions part of the system described here for

22 __f

two reasons. First, extensions can be justified only in so far as they

improve the trace specification method, and it's not clear to me that the

either of these extensions do that. Second, such extensions would lead to a

more complicated definition of model than the one presented in the last

section and hence, make it harder to verify that a specification has a model.

The former extension requires more restrictions to be placed on 1[.1 so as to

render, e. g., I[.I(I[w],I[x)) ' I[.](I[y],I[z]) if x and z are distinct

procedure calls and hence, also necessitates the inclusion of a new subset

Dp of DT consisting of the denotations of procedure calls. The latter

extension requires either the inclusion of temporal elements in the semantics

or the elimination of V(T)-V(T) as a the- :em of the system unless we introduce

the membership relation into the language and regarl the denotation of V(T) as

a set or a bunch (as defined in (51) of return values. Nevertheless, the

various ways of implementing these extensions merit discussion.

Axiom (9) requires that if TSR, then for any nonempty trace expression S

such that T.S returns a value, R.S returns the same value. This requirement

is incompatable with the inclusion of equivalent, nondeterministic trace

expressions unless, as suggested above, we regard such expressions as

returning, e. g., sets of values. An alternative would be to replace axiom

(9) by one that required merely that T.S and R.S are indistinguishable

i. e., knowing merely that Q is either T.S or R.S and that Q returns a

particular value a is insufficient for concluding that Q is T.S or that Q is

R.S. However, we can make the distinction between knowing that Q is T.S or

R.S, on one hand, and knowing that Q is T.S or knowing that Q is R.S, on the

23

r1

other, only by vastly supplementing the system, e. g., by adding axioms

sufficient to define a proof predicate [31 or an intensional operator (81.

A second property of the system given here is that there are few

restrictions on trace equality. Modifications to the system appear below that

rule out such possibilities as there being two, finite strings of procedure

calls that are equal but not identical.

(1) Change the occurrence of '-->' in axiom (16) to <-)'.

(2) Add the following two new axioms:

Wi) C1S2 where C1 and C2 are any two nonidentical procedureV

calls.

(ii) T.CI -S.C2 4--> (TaS & C 1-_2) where C1 and 22 are any

procedure calls.

24

SOUNDNESS THEOREM

We have seen a semantic conception of consistency and of sufficient-

completeness and we have seen a syntactic conception of consistency and of

sufficient-completeness. However, we have yet to bridge the gap between

them. The following theorem is fundamental in establishing this bridge.

Theorem: An assertion A is derivable from a set of assertions S only if it is

a semantic consequence of S, i. e., SIA --> SkA.

Proof: Assume that M is a model of S. We will prove the theorem via

induction on the length of A's derivation.

Assume that S I-NA --) SPA , for all m n where S I-mA means that A is

derivable from S by a derivation of m steps. We must show that S '-nA

SPA. If A is an assertion contained in S, the proof is trivial since, by

assumption, M models S. If A is licensed by an axiom or rule of inference, we

have the following possible cases:

(1) If A was inferred by axiom (2) or a rule of inference, then its truth

follows by familiar argument from the induction hypothesis since we have

employed the standard definition of truth for all connectives.

25

(2) If A was inferred by axiom (I), then it is of the form (Ev)v-t where v and

t are of the same type and not of the form V(trace) nor of the form

f(argument list). This is true in all models given the interpretation of

such terms and of identity.

(3) If A was inferred by axiom (3), then it is of the form ((v)P & (Ev)v-t) -- >

Pv/t where Pv/t is well-formed. Its truth follows from the fact that

(Ev)v-t is true if and only if t denotes some object in the domain that is

of the same type as v. Given that t is such a term, the axiom reduces to

a special case of (v)P --> Pv/t, which is true by standard argument.

(4) If A was inferred by axiom (4), then it is of the form (Ev)v-t --> t-t.

The truth of this formula follows from the fact that t-t is true iff t is

a denoting term.

(5) If A was inferred by axiom (5), then it is of the form t=t' -- > (P <--)

P') where P' is like P except for some possible occurrences of t'. If

t=t' is not satisfied in some sequence, then A is satisfied by that

sequence. If t-t ' is satisfied by the sequence, then P --> P', and

therefore A, is satisfied by that sequence.

(6) If A was inferred from axiom (6), then it is of the form t-t' -->

(Evdl)Vdlnt [v...v (EVdn)Vdnit. Its truth follows from the

fact that t-t' can be true only if t denotes an object in some domain of

the appropriate type.

(7) If A was inferred by axiom (7) or (8), then it is of the form T-T.e or

T-e.T. By definition of It.], I[T.e] = I(T] - Ie.T] for any T in any

sequence.

(8) If A was inferred by axiom (9), then it is of the form TFR --->

(S)((L(T.S) -> L(R.S)) & (-S-e ->(((Ed)V(T.S)=d 4-> (Ed)V(R.S)ud) &

26

((Ed)V(T.S)-d -> V(T.S)-V(R.S))))). If T R is satisfied by a sequence,

then I[T.S] C DL if and only if I[R.S] E DL, and therefore

(S)L(T.S) -) L(R.S) will be satisfied by the sequence. Further, for any

S that is not the null trace, V(T.S) will be defined iff V(R.S) is and

V(T.S) - V(R.S). Therefore, the right hand side of S will be satisfied.

If T3T' is not satisfied by S, then one of the above condition must fail

making the right hand side not satisfied as well. Hence A is true.

(9) If A was inferred by axiom (10), then it is of the form L(e). But for any

model this is true since I[e] is contained in I[L]. 1
(10) If A was inferred by axiom (11), then it is of the form LCT.S) -- >

L(T). This is true on all models by the definition of I(.].

(IL.) If A was inferred by one of axioms (12)-(13), then its truth follows

from the the definitions of I[procedure call] and I[F]

(12) If A was inferred by axiom (14), then it is of the form (F(D,T.S) &

-S-e) <--> F(D,S). Its truth can be seen by noting that Dv f I[e] -

%, and that if S A e then I[T.S] E Dvi iff S 6 Dvi.

(13) If A was inferred by axiom (15), then it is of the form (F(D,T) & L(T))

--> (Ev)V(T)-v. Its truth follows from the fact that 1[V] is defined on

all and only legal traces in Dv and takes elements of DVi to Di .

(14) If A was inferred by axiom (16), then it is of the form -T-e ->

(ES)((Eall)...(Ealn)TmS.Cl v ... v (Eakl)... (Eakm)T-S.Ck)

where C. is a call on the ith procedure name of S with a. as the jth

parameter of the call. Its truth can be seen by noting that if an element

of DT is not the empty trace expression, then it must be equal to

I[.](u,w) for some u f DT and w 6 Rng(Rng(I/Iv: v is a procedure))

where u may be the empty trace.

27

Corollary: A trace specification is syntactically consistent if it is

semantically consistent.

Proof: If a trace specification is not syntactically consistent, then it is

easy to see that for any assertion P, P & -P is derivable from the

specification. By the Soundness Theorem, this latter assertion must be a

semantic consequence of any model of the specification. But since the

assertion is false in all models, the specification can have no models.

Corollary: A trace specification is sufficiently-complete in the syntactic

sense only if it is sufficiently-complete in the semantic sense.

Proof: If a trace specification is not sufficiently-complete in the semantic

sense, then there is some variable-free trace expression T ending in a

function call and domain constants a and b such that a 0 b yet r[Vl(r[IC) =

I[a] in one model and I(VI(I[T]) - I[b] in another. By the definition of

legality in [11, L(T) must be derivable, yet by the Soundness Theorem, there

can be no domain constant d such that V(T)-d is derivable since I[di would

have to be equal to both l[a] and Ib] while la] i' I[b].

The importance of the Soundness Theorem is hard to over emphasize. All

too often researchers in software specification talk of proving that one

cannot derive a contradiction from a specification by giving a structure that

"satisfies" the specification. Such talk is empty unless one precisely

defines a deductive system and shows that the structure satisfies, not only

the specification, but the deductive system as well, i. e., that the structure

28

preserves truth under derivation. It is not generally the case that giving a

structure that "satisfies" (in some intuitive sense) the assertions of a trace

specification is a valid method for proving the specification syntactically

consistent. one must also show that the structure preserves truth under the

trace derivation system. What the Soundness Theorem demonstrates is that any

structure that is a model in our technical sense satisfies the trace deductive

system. Hence, to prove syntactic consistency, we must merely show that the

specification's assertions are true in some model. We can totally ignore the

deductive system. Analagous remarks apply to the Completeness Theorem

presented in the next section. !

29

COMPLETENESS THEOREM

The first corollary of the Soundness Theorem offers us a method for

proving specifications consistent in either sense of the term, viz, finding a

model, and the second corollary offers a method for proving sufficient-

incompleteness, finding distinct models. In this section we will prove the

deductive system complete vis-a-vis the semantics, i. e., that every

syntactically consistent specification is satisfiable. This will demonstrate

the universality of model construction as a method of proving specifications,

e. g., consistent and will complete the bridge, began in the previous section,

between the syntactic conceptions of consistency and sufficient-completeness

on one hand and their semantic counterparts on the other. The reader should

be warned that for the rest of this section I will use the term "trace

specification" to refer to both proper and non-proper specifications, unless

explicitly noted otherwise. Further, I will often refer to the semantic

specification of some trace specification S, simply as S for the sake of

brevity.

Theorem: Every syntactically consistent trace specification is satisfiable.

Proof: We will follow a method analagous to one employed in (7] which

consists of demonstrating that every specification of a certain type is

30

satisfiable and then demonstrating that every consistent specification can be

extended to a specification of that type. The algebraically inclined reader

will recognize the type of specification we will focus on as being similar to

an ultrafilter. This renders the second demonstration analagous to the proof

that every set of formulas in a Boolean algebra that satisfies the finite

intersection property can be extended to an ultrafilter, and suggests the

following definitions:

Definition: A trace specification is maximally consistent if and only if it

is syntactically consistent and is such that the addition of any further

assertion to its semantic specification would render it syntactically

inconsistent.

Definition: A trace specification is w-complete if and only if for each

assertion of the form (Ex)A in its semantic specification for some variable x,

there is an assertion of the form Ax/t in its semantic specification for some

term t of the same type of x, but not of the form V(T) or f(tl,...,tn).

Fact: For any maximally consistent trace specification S and any assertion A,

either A is in the semantic specification of S or -A is in the semantic r

specification of S.

Proof: If neither A nor -A is in S, then S U J4 l(P & -P) and S Uf-Ah(P &

-P) for any closed assertion P. But then SP(A --> P & -P) and SI(-A -- P &

-P) by the Deduction Theorem since P & -P is closed. But by T, this implies

that S is inconsistent.

31

Corollary: S is closed under derivation, i. e., if SIA then AfS.

Proof: If AIS then -AES, and S would be inconsistent.

Lemm.a: Every maximally consistent, w-complete specification S is satisfiable.

Proof: Order all the domain names dl.. .d. such that dr-dn name all

the return value domains. Divide the terms of S not of the form V(T) nor

f(tl,...,tn) into equivalence classes Et - is: s-t is in S(. (These

are equivalence classes, given the corrollary proven above, since reflexivity,

transitivity, and symmetry are all provable for identity for such terms within

the deductive system.) Since there are at most a countable number of terms,

we can associate each equivalence class Et with an unique integer Nt.

In each case this integer is the denotation of every term in the equivalence

class associated with it. Since there are no well-formed assertions of the

form t lt 2 where tI and t2 are of different types, each class

contains terms of one type. Further each trace expression, domain constant,

and domain variable receives a denotation since t-t is in S for each such t by

axioms (1) and (4).

This assignment suggest the following domains.

DT jx: x - NT for some trace expression TI.

Di ix: x Nt for domain variable or constant t of type d.
Di N

DL =x: x - Nstring and L(string) is in the specificationj.

Dvi X [x: x = NT and F(di,T) is in the specification.

32

The rest of the specification receives the following assignment.

I[B]= NB where B is a domain variable or constant.

If] - the function that takes (Ntl,...,Ntn) to Na such that

f(tl,...,tn)=a is in S.

I(R] - P(Ntl,...,Ntn): R(tl,...,tn) is in Sf.

I(e]- Ne .

I[procedure PROC that takes n parameters] - the function that takes

(Np '...'Np n) to NpROC(P where

PI...,PN are appropriate parameters for PROC.

-E f)i- x D~ji: lifnJ

IlL] - DL.

I[-= - J(x,x): x - Nt for some tf.

IM - the function that takes (NT,Ns) to NT.S.

I['J - the function that takes any integer NT in Dv DL to the

integer N such that V(T)=a is in the specification.a

I[-= u(x,y): x -NT and y = NS and TES is in the specification.

The following considerations show that the domains specified meet the

conditions for being a model. The fact that x is in DT implies that x 6

De U ly: y - I[.](u,w) for some u 4 DT and w G Rng(Rng(I/[v: v is an

access procedurel))j follows from the fact that S is consistent, is

w-complete, and contains axiom (16) since S is closed under derivation. If

NT is not in De, then T-e is not in S, and hence, given the fact that

for every A either A or -A is in S, -T-e is in S. But this implies that the

consequent of axiom (16) is in S. Since S is w-complete, an instance of this

consequent is also in S, and since the union of this disjunction with the set

33

'V

LAm

containing the negation of each disjunct is inconsistent, one of the disjuncts

must be in S. Hence, we have an assertion of the form T=R.C in S where C is a

procedure call. De 1 Dv - 0 since F(di,T) --4 -T - e is in S via

axiom (14), and De C DL by axiom (10). Every trace in DV is in some

DVi by axioms (12) and (16), and no trace is in two Dvi by axioms (13)

and (16).

The fact the clauses (), (2), (3), (7)-(10) of the definition of trace

sequence are satisfied follows by construction of the sequence given that S is

a well-formed trace specification. The fact that the rest of the definition

is satisfied rests on the fact that S is maximally consistent, w-complete and

closed under derivation.

With respect to clause (4), note that if NT is in DVi rl DL, then T

is in an equivalence class that contains some trace expression R and some

trace expression Q such that F(di,R) and L(Q) are in S. But this can be

the case only if T=R and T-Q are in S, which given axiom (5) and the fact that

S is closed under derivation, implies that F(di,T) and L(T) are in S.

This implies that (Evdi)V(T)mvdi is in S by axiom (15), which in turn

implies that V(T)nt is in S for some domain variable or constant t of type

di since S is w-complete. Hence, [V] takes T to the domain which is

associated with t, viz. di.

Case (a) of clause (5) is trivial and cases (b) and (c) follow from axioms

(7) and (8). Case (d) follows from the fact that if NT Dv U De then

for all di, -F(di,T) and -Tae must be in S. But then by axiom (14),

34

.-- ., w

there can be no R such that F(di,R.T) is in S. Clause (e) follows from

the fact that if NT E DVi then F(di,T) must be in S as shown in the

preceding paragraph. But then for every R, F(di,R.T) is in S by axiom

(14), which implies that NR.T E Dvi for every R. Finally, case Cf)

follows from axiom (11) by an analagous argument.

Clause (6) is satisfied by a similar argument in light of axiom (9). Case

(a) and case (b) of clause (1I) are trivial, and case (c) is satisfied by

standard argument given axioms (12) and (13).

Given that we are dealing with a sequence, we must now show that it

satisfies every assertion in S. To this end, define the order of an assertion

A, O[A], as follows:

If A is of the form R(tl,...,tn), L(T), F(T), TER, or t=t' then O[A] 1.

If A is of the form B v C, B & C, B -> C, or B 4-> C then

O[A] max(O[B],O(C]) + 1.

If A is of the form (v)B or (Ev)B then O[A] - O[B] + 1.

We can now show that every assertion A in S is satisfied by induction on

the order of A. Assuming that each formula of order less than n is satisfied

iff it is in S we will show that each formula A of order n is satisfied iff it

is in S. There are four possible cases:

(1) If O[A] - I and A is not of the form t-t ', then the seauence satisfies A

iff A is in S by construction. If A is of the form t-t', we must show

that t (and hence, by symmetry, t') denotes something. There are two

ca For t not of the form V(T), if tnt' is in S then (Ev)t-v is in S

35

by axiom (6). For t of the form V(T), we have (Evdl)V(T)mvdl v...v

(Evdn)V(T)Vdn is in S by axiom (6). But as shown in establishing

the validity of our domains above, a disjunction can be in S only if a

disjunct is in S. Hence, (Ev)V(T)-v is in S for some Vdi. This

implies that if t-t' is in S, then t denotes something. Given this fact,

A is satisfied by construction.

(2) If O[A] is greater than I and A is a truth functional compound of B and C,

then by induction hypothesis, B and C are in S iff they are satisfied.

Consider the case where A is of the form B v C. If A is in S, and neither

B nor C are in S, then -B and -C are in S by familiar argument, and S

would be inconsistent. Therefore, if A is in S either B is in S or C is

in S. Hence, if A is in S, either B or C is satisfied, and therefore, A

is satisfied. If A is not in S, then -A is in S. Hence, neither B nor C

can be in S since S is consistent. Hence, neither B nor C is satisfied,

from which it follows that A isn't satisfied. The argument for other

truth functional compounds is similar.

(3) If O[A] is greater than I and A is of the form (Ev)B, then A is in S only

if Bv/t is in S for some term t not of the form V(T) or f(tl,...,tn) since

S is w-complete. Now Bv/t is satisfied by induction hypothesis which

implies that B is satisfied by that sequence which is identical to the one

we constructed except for assigning Nt to Ev . Hence, A is satisfied

by definition. If A is not in S then -A is in S, and there can be no t

such that Bv/t is in S since S is consistent. Hence, by induction

hypothesis, there is no sequence of the appropriate type that satisfies B

since by construction, every element in D is denoted by some t.

Therefore, A is not satisfied.

36

(4) The only other possibility is if A is of the form (v)B. If A is in S,

then Bv/t must be in S for every term (not of the form V(T) or

f(tl,...,tn)) of the same type as v by familiar argument. Hence, by

induction hypothesis, B is satisfied by all appropriate sequences since

every element in D is denoted by some t. Therefore, A is satisfied. If A

is not in S, then -(v)B must be in S by familiar argument. Hence, (Ev)-B

is in S since S is closed under derivation. But since S is w-complete,

this implies that -Bv/t is in S for some t. Hence, there is a sequence

which fails to satisfy B, and therefore, A is not satisfied.

Given that we have established that every maximally consistent, w-complete

specification has a model, all that is left to prove is that any consistent

trace specification is contained in some maximally consistent, w-complete

specification.

Lemma: Every syntactically consistent specification can be extended to a

maximally consistent, w-complete specification.

Proof: Enumerate all assertions in the trace specification language so that

A. is the ith assertion in the enumeration and construct the set S as
I I

follows:

so - the original set.

Si+l = Si if Si U [Ai+l is syntactically inconsistent

Si4. Si U fAi+l if the resulting set is syntactically consistent

and Ai is not of the form -(v)B.

Si+l - S i U Ai+l,-Bv/t where t is the alphabetically first variable

the same type as v that does not appear in Si U jAij, if

37

Si U Ai+l1 is syntactically consistent and Ai is of the form

-(v)B.

S = Sw.

The fact that S is maximal can be seen by noting that if some assertion

is not in S, then it is because IAi+l(U Si was inconsistent.

But for any assertion A, if JAI U Si is inconsistent, then [AI U S must be

inconsistent since Si is a subset of S.

The fact that S is syntactically consistent can be established if we

demonstrate chat each Si is syntactically consistent since any derivation

of an inconsistency can involve at most a finite number of premises and every

finite set of assertions contained in S is contained in some Si. We can

establish the syntactic consistency of each Si by induction. So is

consistent by hypothesis. Now, if Si is consistent, then Si+l is

obviously consistent if either it is equal to Si or it was formed by the

addition of some formula which could be added consistently to Si. Hence,

the only problematic case occurs when we add -(v)B to Si since in this

case we also add a formula of the form -Bv/t, and we have no guarantee that

this latter formula is consistent with the resulting set. However if Si U

1-(v)B, -Bv/ti is inconsistent, then we can derive P & -P from this set for

some closed asserton P. But by the Deduction Theorem, this implies that we

can derive Bv/t from Si U [-(v)BI by using the T rule of inference. Since

by hypothesis, t does not occur free in Si or in -(v)B, we can generalize

and derive (t)B which implies that Si U [-(v)Bj could not have been

cons is tent.

38

A. 9.A-

The fact that S is w-complete can be seen by noting that if (Ev)A is in S

then -(v)-A must be in S. But when this latter formula was added, we also

added the formula --Aa/t for some variable t. But this formula can be in S

only if Aa/t is also in S.

Corollary: Every syntactically consistent proper specification has a model.

Proof: Immediate given that a set of closed assertions is satisfiable by a

sequence iff the set is true in every model that contains that sequence.

Corollary: SA if and only if SbA.

Proof: The implication from right to left follows from the Soundness

Theorem. Going from left to right, note that if A is not derivable from S,

then S U I-Al is syntactically consistent. Hence, by the Completeness Theorem

it is satisfiable by some sequence, and therefore, it can't be the case that

SPA.

Corollary: S is syntactically consistent (sufficiently-complete) iff it is

semantically consistent (sufficiently-complete).

Proof: Immediate given the preceding corollary.

39

- ,,Ask, ,-- -.. .

APPLICATIONS

We have seen a syntactic and a semantic definition of consistency and of

sufficient-completeness, and we have seen that the syntactic and semantic

definitions are coextensive in each case. Although the fact that the

definitions are coextensive provides independent evidence that each adequately

captures what we are after, some may feel that the coextensiveness

demonstrates that we only needed, e. g., the syntactic definition to begin

with. However, there are advantages in having two definitions which come to

light when considering proofs about specifications. These advantages stem

from the fact that ceteris paribus, it is easier to prove that something

exists vith a certain property (e. g., that there are koala bears in

Australia) than to prove that nothing exists with a certain property Ce. g.,

that there are no polar bears in Australia). After all, the method of proof

in the first case is obvious and indisputable: show the beast. It is

worthwhile considering specific examples.

Application to Consistency

When demonstrating that a specification is inconsistent, it is usually

easier to directly derive P & -P from the specification for some assertion P,

than to directly demonstrate that the specification has no model. However,

40

when demonstrating that a specification is consistent, it is usually easier to

provide a model than to directly demontrate that P & -P cannot be derived. As

an example, a direct syntactic demonstration that P & -P cannot be derived

from the following stack specification when supplemented by first order number

theory is quite difficult, while it can easily be shown that the supplemented

specification has a model.

Stack Specification:

a and b are assumed to be a type integer, while r and s are assumed to be of

type name. + is written in infix, and subscripts are dropped.

Syntax:

PUSH: (int) x (name)

POP: (name)

TOP: (name)--) (int)

DEPTH: (name)---> (int)

int the set of integers

name = the set of finite character strings

Semantics:

(1) LT) --> L(T.PUSH(a,s))

(2) L(T.TOP(s)) <-> L(T.POP(s))

(3) T.DEPTH(s)'T

(4) T.PUSH(a,s)-.POP(s)ST

41 ,.I

- - ._,t ,. - S~t-+ =i .. , ., 2 ,., l-

_I

(5) -r-s -- T.PUSH(a,s).PUSH(b,r)!T.PUSH(br).PUSH(a,s)

(6) L(T.TOP(s)) --> T.TOP(s)=T

(7) L(T) -1 V(T.PUSH(a,s).TOP(s))-a

(8) L(T) --> V(T.PUSH(a,s).DEPTH(s))=V(T.DEPTH(s))+I

(9) (L(T) & -r-s)- -> V(T.PUSH(a,s).DEPTH(r))=V(T.DEPTH(r))

(10) V(DEPTH(s))=O

Stack Model:

Note that only those aspects of the model that are invariant across sequences

of the model must be given in order to specify it uniquely. Let s be any name

variable or constant and i any integer variable or constant. D =

(DT,int,name) where DT =x: x is a possibly empty, variable-free string

of procedure callsI. DV = DVi those strings that end in TOP or DEPTH,

De is the empty string, and DL =x: x is in DT and is such that to

the left of every POP(s) and TOP(s) in x there are more PUSH(i.s)'s than

POP(s)'sI. I assigns to L, F, e, and = the obvious intepretation and to each

numerical constant and function the standard interpretation.

Itt] - t if t is an integer, a name, or a procedure call involving no

variables. If the call contains variables, I(t] is the call once each

variable v has been replaced by I[v].

I[V] a a function f from those elements of I[L] that end in TOP or DEPTH, to

the integers such that for every x C Dom(f), f(x) - n if (1) x ends in

DEPTH(s), and n is the number of PUSH(i,s)'s in x minus the number of

POP(s)'s in x, or (2) x ends in TOP(s) and, scanning x from right to left,

PUSH(n,s) is the first occurrence of a PUSH(i,s) in x that cannot be

42

paired with a previous, unpaired POP(s).

I[.] is the concatenation function

113] - I(x,y): x,y r DT and x and y are identical except perhaps in the

order of their procedure calls after both x and y have been subjected to

the following proceduref"

1. Remove all DEPTH's.

2. Remove every TOP that is such that the initial string of the trace up

through it is an element of I[L].

3. Remove the first and last call of all strings o. the form

PUSH(i,s).--.POP(s), where -- is any (possibly empty) string of

procedure calls that contains neither POP(s) nor PUSH(i,s) for any i.

4. Repeat #3 as long as possible.

An important aspect of the above proof is that it demonstrates, not merely

that the stack specification has a model, but also that it has a model of the

type we are interested in. For example, if we wrongly assumed that DEPTH

returned, not the present depth of the stack, but rather the maximum depth

that the stack had attained in its hisLary, we would discover that we could K

find no model that interpreted DEPTH in the desired way. If we had proven the

specification consistent by syntactic means, however, this fact would have

never come to light.

Application to SufficienL-Completeness

A direct syntactic proof that a specification is not sufficiently-complete

would consist in demonstrating that there is a variable-free trace expression

43

C - .. -

T ending in a function call such that L(T) is derivable but V(T)-a is not

derivable for any constant a. Such a proof would be, at best, challenging.

However, the semantic approach is straight forward. One must merely give two

models M and M' for the specification and show that V(T)=a is true in M and

false in M', thus demonstrating that there can be no a such that V(T)=a is

derivable. As an example, I will prove the following keysort specifications,

adapted from a similar one suggested by David Parnas, incomplete 6 :

Keysort Specification:

It is assumed that a, a', b, b', x, and y are of type integer. > and < are

written in infix, and subscripts are dropped.

Syntax:

INSERT: (int) x (int)

REMOVE:

FRONT: -- > (pair)

int = the set of integers

pair = f(x,y): x (int & y 4 intf

Semantics 7 :

(1) L(T) --> L(T.INSERT(a,b).REMOVE)

(2) L(T.FRONT) --> L(T.REMOVE)

(3) L(T.FRONT) -- > T.FRONT-T

44

(4) V(T.INSERT(a,b).FRONT)-(a,b) --)

(T.INSERT(a,b).REMOVEz.T v

(V(T.FRONT) - (a,b) &

T. INSERT(a,b).REMOVE T.REMOVE. INSERT(a,b)))

(5) -V(T.INSERT(a,b).FRONT)-(a,b) -

T.INSERT(a,b).REMOVE T.REMOVE.INSERT(a,b)

(6) V(INSERT(a,b).FRONT)-(a,b)

(7) V(T.FRONT)-(a,b) -->

(V(T.INSERT(a',b').FRONT)-(x,y) -->

((a<a' & x-a & y=b) v "

(a>a' & x-a' & y=b') v

(a-a' & x-a & (y-b v y-b'))))

Interpretation:

M and M' agree on the following:

(1) D, DT, I[.], and 1tt] where t is an integer ordered pair or

procedure call are analogous to the model for the stack

specification. Integral relations receive the standard

interpretation.

(2) I[L] - Ix: x E DT and such that to the left of every REMOVE or

FRONT in x there are more INSERT's than REMOVE's1.

For M the interpretation of E and V depend on the following normalizing

algorithm which takes as input strings of procedure calls:

NORMAL(strin&):

1. If string DL, then abort.

45

2. Remove each occurrence of FRONT from string.

3. Label the ith INSERT from the left and the jth REMOVE from the left

in string INSERT i and REMOVEj respectively. Call the key and the

ordered pair associated with INSERTi, key i and pair i

respectively.

4. For k-l.to the number of REMOVE's in string, eliminate the pair

INSERT. REMOVE such that the following conditions are met:

(a) INSERTj is to the left of REMOVEk in string.

(b) If INSERTi is to the left of REMOVEk, then key i >,,

keyj.

(c) i>j (Ca) or (b) fails for INSERT i.

(3) I[V] = a function f from those strings in I[L] that end in FRONT to

ordered pairs of integers (a,b). f(T) - (a,b) iff when after the

rightmost FRONT of T has been replaced by REMOVE, (a,b) - pair i

where INSERTi is the last INSERT to be removed when the modified T

is subjected to NORMAL.

(4) 1[!-] (x,y): xy 6 DT and when x and y are subjected to NORMAL,

either NORMAL aborts for both of them or NORMAL(x) NORMAL(y) after

NORMAL(x) and NORMAL(y) have been sorted into ascending order such

that INSERTi < INSERTk if key i < keyj or if key i - keyj &

i<j

For M', the interpretation of -and V are as above, but with step (4) of

NORMAL changed as follows:

4'. For k-l.to the number of REMOVE's in string, eliminate the pair

46

INSERT REMOVEk such that the following conditions are met:

(a) As before.

(b) As before.

(c) If there is an i less then j such that key i - keyj, then

there is an n less than j such that pairn = pairj and for

all m less than n keym > keyj

(d) i > j => (a), (b), or (c) fail for INSERT.

To see that the keysort specification is incomplete one must merely note

that if we consider A = INSERT(1,5).INSERT(I,6).FRONT then V(A) = (1,6) in M

and V(A) - (1,5) in 1'.

With respect to proving a specification sufficiently-complete, there is a

standard semantic approach that suggests itself. Call a specification theory

complete if for every assertion A in the specification language, either A or

-A is derivable. If we can show that a specification is theory complete and

give one model in which for every legal, variable-free trace expression T

ending in a function call, V(T)- is true for some constant a, then it follows

that the specification is sufficiently-complete. What is appealing about this

approach is that there are standard methods for proving theory completeness

[2). However, the approach is very limited in that any specification

containing first order number theory is not theory complete [3]. Further, I

suspect that even specifications that do not appeal to first order number

theory are not theory complete for reasons to be discussed in the section of

this paper on future research.

Nevertheless, there are two relatively straight forward approaches to

47

proving a specifcation sufficiently-complete, neither of which seems

preferable to the other. One is to show by induction on the length of a trace

expression that for any variable-free trace expression T there is a constant a

such that V(T)M is derivable. The other is give a model that makes V(T)M a

true for all appropriate T and then perform an induction analagous to the one

described in the first approach to demonstrate that every other model must

also make VT)aM true. As an example, I will use to first approach to prove

the keysort specification sufficiently-complete when we replace assertion (7)

of the specification by the following:

(7') V(T.FRONT)=(a,b) --)

(V(T.INSERT(a',b').FRONT)f(x,y) -- >

((a<a' & x=a & y-b) v

(aya' & x=a' & y-b')))

Assume that for all variable free strings of procedure calls T ending in

FRONT of length less than n such that L(T) is derivable there is some ordered

pair of integers a such that V(T)a is derivable. We must show that for all

such strings T of length n that there is such an a.

First note that by the soundness theorem, if T legal, i. e., L(T) is a

theorem, then L(T) is true in all models. Therefore, every legal string must

be of the form described in M (although it is not necessarily the case that

for every T such that LT) is true in M, T is legal). T can be of four

possible forms:

(1) If T is simply the call FRONT, then it is not the case that L(T).

(2) If T is of the form S.FRONT.FRONT, then V(T)=V(S.FRONT) by assertion (3),

and by the induction hypothesis, there is an a such that V(S.FRONT)=a is

derivable.

48

~i

(3) If T is of the form S.INSERT.FRONT and S.FRONT is not legal, then we can

use assertions (3), (4) and (5) to derive S e. We can then use assertion

(6) to derive a value for T. If S.FRONT is legal, then by the induction

hypothesis V(S.FRONT) has a value, and we can use this value with

assertion (7') to derive a value for V(T).

(4) If T is of the form S.REMOVE.FRONT, we know that V(S.FRONT) has a value.

We can use this value with assertions (3), (4), and (5) to prove that T is

equivalent to a shorter expression and apply the induction hypothesis.

49

COMPARISON WITH THE ALGEBRAIC APPROACH

The trace method has much in common with the more algebraic approaches to

specification, as epitomized, for example, by Guttag and Horning [4]. They

are both methods of "abstract" specification and therefore, seem very much

alike when compared to such alternatives as the "operational definition" and

"abstract model" approaches discussed earlier. Further, the generality of the

term "algebraic" allows the development of algebraic models that are formally

equivalent to the trace method.
8

Nevertheless, the reader will notice two differences between the trace

method for specifying software modules and the algebraic approach. First, the

so-called "type of interest" or TOI is never mentioned in a trace

specification. For example, within the stack specification, the word "stack"

is never used. As such, the specification corresponds more closely to how the

user actually sees a stack module, viz, a set of access procedures with

certain properties, than the algebraic method which gives relations between

the possible "values" stacks can assume. Treating stacks as values renders it

necessary to regard each procedure as taking "stack" as a parameter and any

procedure that affects the "inner state" of the module (called 0-functions in

11) as returning a stack. There is certainly no reason for the procedures in

an implementation of the module to contain such an abundance of parameters and

50

- .. . 1

return values, yet if the user is given the freedom to leave certain

parameters out of his implementation, we lose the advantages of abstract

specification discussed earlier. But how are these parameters to be

represented? Few programming languages allow for the free creation of new

data types. Hence, the interface is ambiguous in that the programmer must

decide whether to treat the parameter as a name or ai one of several possible

data objects, e. g., an array. Choosing to represent the parameter as a data

object would be particularly bad since it would force the programmer to

represent each stack as a separate data object, ruling out implementations

that use, e. g., only one array that stored both names and integers. The

progranmer faces similar problems in dealing with the artificial error values

the algebraic approach needs for its stacks to assume and the unnecessary

functions it needs in order to start, i. e., map an empty value space to an

initial stack.

A slightly different problem that results from treating stacks as values

is that it obliterates the distinction between a function call and the value

returned by that call. This renders it impossible to represent a sequence

such as calll.call2 except by treating call, as a parameter of

call2.9 This is not only unintuitive for many implementations, it also

makes it impossible to represent sequences such as PUSH(i,s).TOP(s).TOP(s)

since the first occurrence of TOP returns an integer while the second

occurrence needs a stack for a parameter.

51

The second difference between the two methods concerns the languages

involved. The trace method makes free use of first order logic with identity

while most algebraists prefer more ',strictive languages. As such, the trace

method allows for much more expressive power. An example is the use of the

existential quantifier in axiom (14) to say that any legal trace expression

ending in a function call must return some value without saying what that

value is. This allows, ,-. g., for the specification of an integer generating

module whose only restriction is that it returns a different integer each time

it is called. Such a module can be specified by the single syntax sentence

GEN: -> (int) coupled with the two assertions L(T) and -Se -- >

-V(R.S)-V(R). The reader should find it enlightening to try to specify this

same module algebraically since he will run into problems, not only in trying

to capture the nondeterminism of the module, but also, as discussed above, in

trying to represent sequences of function calls. Although the richness of the

trace language implies that consistency and sufficient-completeness will be

harder to establish with the trace method, nobody has found a sufficiently

rich language for which consistency and completeness are decidable. Further,

the methods employed in this paper constitute an important step toward coming

up with a uniform method for establishing trace specifications consistent and

sufficiently-complete. The next step is described as an area for future

research.

52

e --

FUTURE RESEARCH

Future research in the trace method can take various forms. First of all,

the desirablity and feasability of extending the model so as to allow, e. q.,

more nondeterminism in specifications and stricter identity conditions between

trace expressions should be explored. Second, alternative methods for proving

specifications consistent and sufficiently-complete should be studied. One

possibility is to cast the specification language as a reduction language and

use methods suggested in [41. Another is to formalize a specification and the

trace deductive system in first order number theory, as in (31, and then try

to derive a formula that says intuitively that the specification is consistent

or sufficiently-complete. Such an approach depends on finding appropriate

bounds, e. g., on the length of of a derivation proving an expression legal

given the length of the expression. Both methods can be computerized, given a

sufficiently efficient theorem prover. Such a theorem prover could also be

employed in generating implementations from specifications by keeping track of

procedure calls and deriving VCT)ina when appropriate. Naturally, such

implementations cannot be found for specifications of noncomputable functions,

but these can be eliminated by restricting the specification language, e. g.,

by bounding quantification, or by placing restrictions on what can count as a

specification, e. g., by making it mandatory that certain assertions are

provable. A pilot project to develop software support was undertaken at the

University of North Carolina and is being continued at the Naval Research

53

Laboratory. Third, methods for proving the correctness of implementations and

the correctness of programs using modules must be developed. Finally, the

notation should be extended to allow for more compact and readable

specifications.

Questions of a more theoretical nature stem from the inability to say

certain things within first order logic. For example, it is impossible to

axiomatically force every trace expression variable to denote only finite

strings of procedure calls or when dealing with trace expression variables

that do denote infinite strings of procedure calls, to restrict equality so

that such expressions are equal only if they are identical. This lack of

expressive power stems from the fact that first order logic is compact [21.

Issues concerning practical consequences of this fact should be explored. One

such consequence may prove to be that trace specifications, in general, are

theory incomplete. Since higher order logics and set theory are tot compact,

they have more expressive power. However, they are also not complete.

Although noncompact languages must be strongly incomplete if only finite

derivations are allowed, future research should explore the possibility of

noncompact languages that are weakly complete [2). Such languages should have

the expressive power to rule out the nonstandard models mentioned above.

54

€

ACKNOWLEDGMENTS

The influence of David Parnas' work on this paper is obvious. I also wish

to thank Karen Dwyer, Mila Majater, Donald Stanat, and David Weiss for helpful

criticism of and earlier draft, and Mark Nixon for some very useful

conversation along the way. Part of the research for this paper was done

under NSF grant #1-O-llO-3276-XA452.

55

FOOTNOTES

1. The predicate F, which intuitively holds of a trace expression if and only

if that expresion ends in a function call, was not included as part of the

original language in [11. However, it is necessary if we are to have a

natural trace deductive system that is complete with respect to a natural

semantics. The inclusion of F is only one of many practical consequences

resulting from work in the area of theoretical foundations of the trace method.

2. The following formation rules are given in Backus Normal Form.

3. Ideally, DT is the smallest set closed under composition that contains

the null trace and each procedure call. However, this restriction cannot be

forced axiomatically in first order logic. See the future research section of

this paper.

4. As a counterexample, the interested reader can verify that Gi~del's

"$provable formula" predicate [31 is specifiable though not recursive.L

5. The notion of occurrence used here is the standard one as used, e. g., in

(101 extended so as to regard trace expressions that occur within other trace

expressions as occurring in any assertion that the latter occurs in.

56

6. It should be noted that the incompleteness is deliberate in order not to

specify what the module does if duplicate keys appear, beyond stating that

such keys are allowed and precede all pairs with greater keys.

7. Strictly speaking, assertions (4) - (7) of this specification are

ill-formed since (a,b) is not a variable. Rigor can be maintained by treating

the assertion V(T.FRONT)-(a,b) as an abbreviation for FIRST(V(T.FRONT)]ra &

SEC[V(T.FRONT)l-b where FIRST[(x,y)]x and SEC[(x,y)]-y.

8. First order logic is, after all, a cylindric algebra.

9. On the other side of the coin, it should be noted that the trace method

makes a sharper distinction between functi~n calls and the values they return

than do many programming languages. As such the trace method cannot represent

calls that take as a parameter the return value of another call as naturally

as the algebraic method.

57

BIBLIOGRAPHY

1. Bartussek, W. and Parnas, D. L. Using Traces to Write Abstract

Specifications for Software Modules, UNC Technical Report #TR 77-012

(1977).

2. Chang, C. and Keisler, H. Model Theory, 2nd ed. (Amsterdam 1977).

3. GS'del, K. "Uber formal unentscheidbare Satze der Principia mathematica

und verwandter Systeme, I", Monatshefte f*r Mathematik und Physik,

XXXVIII (1931), pp. 179-98.

4. Guttag, J. and Horning, J. "The Algebraic Specification of Abstract Data

Types," Acta Informatica, X (1978), pp. 2' 52.

5. Hehner, E. Simple Set Theory for Computing Science, CSRG Technical Report

#102 (1979)

6. Heitmeyer, C. and McLean, J. "An Approach to Describing the Functional

Requirements of an Embedded Comnunications System", forthcoming.

7. Renkin, L. "The Completeness of First Order Functional Calculus", Journal

of Symbolic Logic, XIV (1949), pp. 159-166.

58

8. Hughes, G. E. and Cresswell, M. 3. An Introduction to Modal 1Lc

(Norwich 1968).

9. Liskov, B. and Berzins, V. "A Appraisal of Program Specifications"s,

Research Directions in Software Technology, ed. P. Wegner (Cambridge,

* Massachusetts 1979).

10. Mates, B. Elementary Logic, 2nd ed. (New York 1972).

11. Monk, 3. Introduction to Set Theory (New York 1969).

Parnas, D. T- "On the Criteria to be Used in Decomposing Systems into

Modules", Communications of the ACM, XIV (1972), pp. 1053-1058.

______"The Use of Precise Specifications in the Deve'ipment of

Software", Information Processing 77, ed. B. Gilchrist (New York 1977).

14. Tarski, A. "The Concept of Truth in Formalized Languages", reprinted in

Logic, Semantics, Metamathematics (Oxford 1956).

59

